
Model-driven Walks for Resource Discovery in Peer-to-Peer Networks

M. Bakhouya and J. Gaber
Universite de Technologie de Belfort-Montbeliard (UTBM)

Rue Thierry Mieg 90010 Belfort Cedex, France

Abstract

In this paper, a distributed and adaptive approach
for resource discovery in peer-to-peer networks is
presented. This approach is based on the mobile agent
paradigm and the random walk technique with
reinforcement learning to allow for dynamic and self-
adaptive resource discovery. More precisely, this
approach augments random walks with a
reinforcement learning technique where mobile agents
are backtracked over the walked path in the network. A
metric recording an affinity value that incorporates
knowledge from past and present searches is
maintained between nodes. The affinity value is used
during a search to influence the selection of the next
hop. This approach is evaluated with the network
simulator ns2.

1. Introduction

Distributed computing such as peer-to-peer
networks promise a distributed computing
infrastructure that can provide globally available
network resources. Their size and complexity continue
to increase and allow an almost ubiquitous availability
of resources. Resources are bound to specific hosts,
representing hardware devises (e.g., disk), logical
system objects (e.g., socket), files or software entities
that are managed by an application.

In peer-to-peer networks, a resource discovery
system to locate specific resources is required. More
precisely, the resource discovery is a basic
functionality that enhances the accessibility of
resources in the distributed context: given a user
request, a resource discovery mechanism should locate
and return a set of peers’ addresses that match the
description of requested resources.

In a large-scale peer-to-peer network, resource
discovery system should be decentralized and scalable
in order to avoid potential computation bottlenecks
such as the need for knowledge about a centralized
location, and the need for updates to that location
whenever resources characteristics or locations may

change. Several systems are proposed in order to
implement a resource discovery services. These
systems can be classified as either structured or
unstructured [1].

Structured architectures can be classified in
indexation-based architectures and hashing-based
architectures. In indexation-based architectures, typical
resource discovery architectures, such as Napster [3],
Kaaza [8], consists of three entities: resource providers
that create and publish resources, resources brokers
that maintain repositories of published resources to
support their discovery, and resource requesters that
search the resource broker’s repositories. Repositories
in resource discovery systems have traditionally a
hierarchical architecture [8,17,18,19]. Indexation based
architectures cannot meet the requirements of both
scalability and adaptability simultaneously. The way in
which they have typically been constructed is often
very inflexible due to the risk of bottlenecks and the
difficulty of repositories updating. Hashing-based
architectures [9, 10] like Chord [11], Pastry [12], and
Tapestry [13] proposed primarily to file sharing and
use Distributed Hash Tables (DHTs) to assign files to
specific nodes. Hashing-based architectures permit to
implement a direct routing search algorithm to
efficiently locate resources. However, the overlay
network (i.e., DHT) between peers is generally hard to
maintain. More precisely, peer join/leave operations
could incur huge overheads [2].

In contrast, unstructured P2P networks, like
Gnutella [14], have no precise control over resource
emplacements and use flooding search protocols where
the request is broadcast to all peers within a certain
radius with TTL mechanism (TTL for Time To Live)
[1, 2]. More precisely, in order to find a resource, the
request is flooded to peer nodes in the network. Each
request has an attached time to live to control the
number of hops that a query can be propagated across
the network. Each node that passed a request to its
neighboring peers would decrement the TTL. When
the TTL reached 0, the request was no longer
forwarded. However, it is not possible to guarantee the
success or failure of a request. In other words, a

resource may not be found even though it does in fact
exist in the network. To overcome this disadvantage,
the dynamic TTL using the expanding ring technique
is proposed in [1]. The principle of expanding ring is
as follows: a peer starts a flood with small TTL, and
waits to see if the search is successful. If it is, then the
peer stops the flooding. Otherwise, the peer increases
the TTL and starts another flood. The process is
repeated until finding required resource or covering the
entire network. According to [1,2], the expanding ring
technique guaranties that if the resource is presents in
the network it will be found compared with regular
flooding with a fixed TTL. However, if the expanding
ring mechanism solves the TTL selection problem, it
does not address the message duplication problem
inherent in flooding that can generate large loads on
the network [1,2].

Random walk is a well-known technique [7,16],
which forwards a query message (walker) to a
randomly chosen neighbor at each step until the
service is found, can avoid the message duplication
problem inherent in the flooding mechanism. Using
one walker, it cuts down the message overhead
significantly. However, it increases delay of successful
searches [1,2]. To decrease the delay, a requesting peer
sends k query messages, and each query message takes
its own random walk. However, it is difficult to
determine a priori the number of walks and when this
number is big enough, the message traffic increases
significantly [1, 2]. The replication mechanisms, such
as cache some objects in the reverse path of queries,
proposed in [2] can reduce the lookup length and
decrease the message traffic. However, in a dynamic
and distributed setting, it is difficult ever impossible to
maintaining the coherence of duplicated objects.

Recently, an alternative approach to replication
mechanisms, proposed in [15], uses both random
walks and a cloning mobile agent-based technique for
resource discovery in peer-to-peer networks. More
precisely, in this paper, three scenarios with mobile
agents for resource discovery are analyzed. To locate a
service, a mobile agent starts, at its first step, on its
requester peer. At each hop, a mobile agent determines
the IP address of randomly chosen neighboring peers,
creates clones, and pass tasks to these clones that move
to these peers. This scenario with cloning allows
mobiles agents to cover a much wide area of network
peers in a reasonable amount of time compared to a
single mobile agent scenario and multiple mobile
agents' scenario [15].

In this paper, to decrease delay of request resolution
proposed in [15], a reinforcement learning mechanism
for resource discovery in peer-to-peer networks is
proposed. This mechanism of reinforcement learning

allows peers to learn from their satisfaction, and how
coordinate to select and forward requests to the
required peers in the most efficient ways. Unlike a
random walk technique that allows peers to forward
incoming queries to randomly chosen neighbors, in
learning mechanism each peer selects a neighbor that
has the highest probability of having query results.

Several works propose to use learning mechanisms
for resource discovery in a peer-to-peer network. For
example, Iamnitchi and al. [4] have proposed a
learning-based strategy for request forwarding. Peers
learn from experiences by recording the requests
answered by other peers. By this learning strategy,
each peer maintains information about other peers in
the network. The learning mechanism however is not
exposed in this paper. Wang in [5] has proposed
another learning based strategy approach inspired by
ant colony and by using mobile agents. In this
approach, the learning strategy is based on the use of a
migration policy to discover routes between peers with
available resources. These routes are then used to
resolve user requests. As pointed out by the author
from the experiments [5], the main difficulty of this
approach is how to design and set up the migration
policy parameters to handle different user requests.
Tsoumakos and Roussopoulos have proposed in [20]
an adaptive probabilistic search approach, but no
learning mechanism was given.

In this paper, a biased random walk based on
mobiles agents and a reinforcement learning
mechanism for resource discovery in peer-to-peer
networks is presented. This reinforcement learning
mechanism constitutes an organizational memory
similar that the adaptive memory of immune system
[21,23,24]. This organizational memory summarizes
histories on how requests are performed in the past in
order to adapt to current and future requests.

Recall that a mobile agent is an autonomous
program that can move between sites of the network
and perform computations at these sites on behalf of a
user or an application [22]. Several applications have
shown clear evidence of benefiting from the use of
mobile agents such as electronic trading, distributed
information retrieval and information dissemination
[21].

Recently, Gaber in [23,24] has proposed two new
paradigms alternative to the traditional client/server
paradigm (CSP) to design and implement Ubiquitous
and Pervasive Computing applications: the adaptive
Servers/Client Paradigm (SCP) and the Spontaneous
Service Emergence Paradigm (SEP). As pointed in
[23,24], these paradigms could be implemented via a
self-adaptive and reactive middleware inspired by a
biological system like the natural immune system that

exhibits self-organizing and emergence capabilities.
More precisely, unlike the classical Client/Server
approach, each user request is considered as an attack
launched against the global network. An immune
networking middleware reacts like the natural immune
system against pathogens that have entered the body. It
detects the infection (i.e., user request) and delivers a
response to eliminate it (i.e., satisfy the user request).
Recall that in ubiquitous computing, the main
objective is to provide users the ability to access
services and resources all the time and irrespective to
their location, while in pervasive computing, the main
objective is to provide spontaneous emergent services
created on the fly by mobiles that interact by ad hoc
connections [23,24]. These new paradigms use mobile
agents with cloning, self-organizing, and self-
regulation capabilities.

2. Request resolution approach

The request resolution is the process by which the

user will be provided by the required service. In the
proposed approach, this process is made in two stages:
request forwarding stage and result backtracking stage.

2.1. Request forwarding

In P2P networks, each peer contains links to other
peers called neighboring peers, as typical Gnutella-like
networks. Each peer has a bounded number of
neighbors and provides at least one resource. One or a
set of resources can represent a service

),...,,(21 nRRRS= and we called it a service path.
The peer willing to locate a service creates a mobile

agent, called request agent. This agent initiates a
random walk in the network until it discovers
appropriate peers that can resolves the request r or it
terminates its random walk. At each hop, the mobile
agent can clone itself. When the all required resources
are discovered, a request agent stops cloning itself,
send results to the requester, and starts the
backtracking phase. In this phase, mobile agent travels
back to its initial peer following back the founded path.
The role of this backtracking phase is to perform a
reinforcement learning mechanism on links between
peers. More precisely, the objective of this
backtracking phase is to permit for peers to learn from
mobile agents satisfactions on past requests to carry
out biased random walk in order to improve
performance of future requests.

It is worth noting that, in the agent-cloning
scenario, the increasing of the agent population size
with cloning operation will increase resource demands

in the network, which will affect the overall
performance. The self-adaptive and distributed
regulation algorithm proposed in [21,25] is used to
regulate dynamically the agents’ population size in a
network. In this algorithm, each mobile agent selects
locally an appropriate behavior to its environment state
from the following ones: death, moving or cloning
without using any global information.

It should be noted that, at each step, a mobile agent
adds the peer visited to its traveled path rπ . Also, the
required resources discovered are added to an agent’s
set of founded resources denoted by rF . The mobile
agent moves back to the requester peer when all
resources are found (i.e., rr FS =) or terminate its
walk.

Since each peer could have several neighboring
peers, a mobile agent needs a local decision
mechanism to select the most next suitable peer to
visit. The selection mechanism is based on link affinity
values between peers that incorporate knowledge from
past and present searches. More precisely, a mobile
agent chooses a peer that has the highest affinity value.
An affinity value is a real variable that is adjusted or
reinforced by mobile agents satisfactions during a
result backtracking phase (presented in the next
section). The satisfaction value is calculated for each
request r as follows:

r

rr
S
FSat

#
#)(=π (1)

In addition, we consider that a TTL value is
associated with each mobile agent. This TTL value
decreases by one at each visited peer. When the TTL
reaches the value 0, the agent checks with its initiator,
the original requester. If any other mobile agent has
already found the required resources, it terminates its
random walk and starts the result backtracking phase
with the reinforcement learning process. Otherwise, if
the initiator renews its TTL value, the agent continues
it walks and moves randomly to a next peer, if not, it
starts the backtracking phase to adjust the affinity
values along the computed path.

2.2. Result backtracking

Upon mobile agent termination (i.e. success or fail)
it starts the backtracking phase. During this phase, the
path computed between an end point of walk (i.e.,
residing peer) and the requester point will be
reinforced by affinity adjustments. This phase makes
the path more adapted to future requests. Therefore,
the resource discovery system will be able to process
the most frequent requests more efficiently. During the

result backtracking phase, the mobile agent goes back
from the end point, via the intermediate peers on the
founded service path, to the initial point (i.e., requester
peer) and reinforce the service path based on its
satisfaction calculated by the equation (1). The affinity
variation for a particular request r between a peer iP

and a peer jP in the path rπ is determined as follows:

))()(()(ijrij mfSatrm −=∆ πµ (2)
More precisely, when the mobile agent is on the

peer jP , it moves back to its predecessor server iP

and adjusts the affinity value ijm using equation (2),

wherein)(rSat π is the satisfaction degree and µ is a
constant value chosen between 0 and 1. For example,
if the mobile agent found 80% of the resources for a
particular request r , the satisfaction degree)(rSat π is
set to 0,8. If the mobile agent terminates with success,

)(rSat π is set to 1 since all the required resources are

found (i.e., rr FS =). Also, when a mobile agent
terminates its walk, it calculates the value of its
satisfaction using the equation 1, and starts the result
backtracking phase along the reverse path rπ towards
the requester peer. The value of affinity is mapped to a
value between 0 and 1 by using the following logistic
equation:

)exp(1/1)(ijij mmf −+= (3)

Within this equation, the affinity value ijm
increases quickly when it is near 0 and satisfaction

)(rSat π is equal to 1. Also, the affinity value ijm
decreases quickly when the satisfaction is equal to 0.

To illustrate the forwarding and backtracking
phases, we consider the following example. To locate a
service),,,(4321 RRRRS= , a peer P1 creates a request r
and initiates two mobile agents A1 and A2 (since he has
two neighbors) with the list Sr of the required
resources, the IP address and an initial TTL. Figure 1
shows how a forwarding phase works. The two agents
A1 and A2 add the peer P1 to their visited peers list (i.e.,
a service path) and move to the peer P2 and P6
respectively. These agents repeat the same processes
until they find the required service or their TTLs are
expired. The mobile agents paths during the request-
forwarding phase are shown with arrows in the figure
1. For example, since, the peer P2 provides the
required resource R1, the agent A1 adds it to its set of
founded resources rF and then moves to the P2‘s
single neighbor P3 that possess the required resource
R4. Since, the peer P3 has two neighbor peers P4 and

P9, the agent A1 is cloned to create another agent A11
that moves to peer P9. A1 moves to the other peer P4
which holds R3, creates another clone, the agent A12,
that walks to the peer P8, and moves itself to the peer
P7 with the last required resource R2. A1 starts then the
backtracking phase towards its initiator, the requester
peer P1.

Fig. 1 – Request forwarding phase to locate the service

),,,(4321 RRRRS= . Arrows illustrate mobile agents paths. Ap
denotes the agent p and Apq the qth clone of Ap, mij denotes
the affinity value between the peer Pi and the peer Pj that
incorporates knowledge from past and present searches.

Fig. 2 – Request backtracking phase. Mobile agents,

during backtracks illustrated by arrows, adjust the affinity
values.

After forwarding phase either with success or fails,

agents walk back as shown with arrows in figure 2.
More precisely, during the backtracking phase, each

P1
R9

P6
R6

P5
R8

P9
R7

P3
R4

P2
R1

P7
R2

P4
R3 A12

A1

A1

A11

A1
A11

A12

A1

A11

A12

A21

A2

A21

A2

A12

P8
R5

m74=3

m47=0,5

m84=0 m48=1,87

m93=3
m39=0,77

m34=1,28

m43=2

m76=4 m67=0,52

m65=2,05

m56=1

m61=1

m16=1,39

m12=1,14

m21=2

m23=0,9

m32=1

P1
R9

P6
R6

P5
R8

P9
R7

P3
R4

P2
R1

P7
R2

P4
R3

m21=2

m12=0

m16=3

m61=1

m67=1 m76=4

m74=3

m47=0

P8
R5

m48=2 m84=0

m43=2

m39=1
m93=3

m34=1

m32=1

m23=0,5

m65=3

m56=1
A1

A11

A1 A1

A12

A1

A2
A21

A2

mobile agent goes back from the last visited peer, via
the intermediate peers on the founded service path, to
the initial peer. Agents use a reinforcement learning
mechanism to adjust and reinforce dynamically link
affinity values between peers according to their
satisfaction deduced from delivered responses. More
precisely, the new value of the affinity ijm is obtained
by adding its previous value with the variation
determined by equation (2) (i.e.,)(rmmm ijijij ∆+=). As
illustrated by figure 2, the mobile agent A11 with path

),,,(9321 PPPPr =π fails, while the mobile agent A1 with

path),,,,(74321 PPPPPr =π finds the whole service.
Therefore, its satisfaction is set to 1 since 100% of the
required resources are found. The mobile agent moves
back from the peer 7P , via intermediate peers on the

founded service path, to 1P and reinforces affinities

values of the path),,,,(74321 PPPPPr =π . In this case,

the affinity value of 47m , 34m , 23m and 12m are

reinforced using equation (2), where)(rSat π is set to

1. For example, 47m has increased from the value 0 to

0,5 (i.e., 0,5=0+(1-f(0)), with 1=µ) and 34m has been
adjusted from the value 1 to 1,28 by both the agents
A1 and A12. The mobile agent A11 has failed and its
satisfaction is set to 0,5 since only 50% of the required
resources are found (i.e., R1 and R3). This agent moves
back from the peer P9 to a peer P1 and adjusts the
affinity values 39m , 23m and 12m along the path

),,,(9321 PPPPr =π using equation (2) and)(rSat π

equals to 0,5. For example, 39m has decreased from
the value 1 to 0,77 (i.e., 0,77=1+(0,5-f(1)), with

1=µ)).
This proposed learning mechanism permits to peers

to learn from past and present requests to improve
performance of the future requests. It do not require
any additional overhead to adapt to dynamic
conditions changes in the network such as peer arrivals
or departures, or when resources are removed or new
ones are inserted since affinity values are adjusted
dynamically by mobile agents during the requests
resolution process.

3. Simulation results

The proposed discovery approach is evaluated by
simulations implemented with NS2 [6]. A network of
100 peers is generated randomly. Each peer provides
one resource of ten kinds of resources. The simulation

abstracts any considerations about networking issues
such as bandwidth constraints and time processing.

The objective of this simulation is to compare two
strategies as shown in figure 3. In the first strategy, a
reinforcement learning mechanism is not performed. In
this case, at each simulation step, 10 mobile agents
created at some peers selected randomly are asking for
different kinds of resources generated randomly
between 1 and 10. Mobile agents walk randomly in the
network until to meet peers with the required resources
and resolve their requests [15]. In the second strategy,
at the beginning of the simulation, requester peers
create mobile agents that initiate random walks in the
network to resolve requests. In other words, at each
simulation step, 10 mobile agents created at some
peers selected randomly are asking for different kinds
of resources generated randomly between 1 and 10.
Mobile agents walk randomly to seek peers with one
of the required resources. As the simulation progress
and using the affinity adjustments during the request
backtracking phase, for a particular request, mobile
agent moves to a peer that has the highest affinity
value and a selected service path will emerge as a
response to that request.

Fig. 3 – comparison of the average requests resolution

time with a simple random walk without learning mechanism
and the proposed model-driven walk.

This result shows that with reinforcement learning,

at the beginning of the simulation, request resolution
performs poorly like the simple random walk without
learning. As more simulator time elapses, peers learn
from delivered responses, which improve the
performance of the resource discovery process.

4. Conclusion

In this paper, the use of mobile agents with a
reinforcement learning mechanism is shown to be the
appropriate approach to provide a distributed, scalable
and adaptive resource discovery in peer-to-peer

0

0,5

1

1,5

2

2,5

3

3,5

4

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

t

r

Simple random walk
Model-driven walk

networks. This reinforcement learning mechanism that
incorporates knowledge from past and present requests
improve the performance of the request resolution
process. Future works address additional simulations
with ns2 to evaluate the approach performance when
storage and bandwidth communication are considered.

5. References

[1] C. Wang, and B. Li, “Peer-to-peer overlay networks : A
survey”, http ://comp.uark.edu/ cgwang/Papers/TR-P2P.pdf,
2003.
[2] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search
and replication in unstructured peer-to-peer networks”, in
Proceedings of 16th ACM International Conference on
Supercomputing (ICS'02), New York, USA, pp. 84-95, June
2002.
[3] Napster Inc. The Napster homepage. In
http://www.napster.com/, 2001.
[4] A. Iamnitchi, I. Foster, and D. Nurmi, “A peer-to-peer
approach to resource discovery in grid environments”. In
HPDC’02, citeseer.ist.psu.edu/iamnitchi02peertopeer.html.
[5] D. Wang, “A resource discovery model based on multi-
agent technology in P2P system”, Intelligent Agent
Technology (IAT’04), IEEE/WIC/ACM International
Conference, pp. 548-551, 2004.
[6] Network Simulator, http://www.isi.edu/nsnam/ns/.
[7] Andrei Z. Broder, Anna R. Karlin, P. Raghavann and E.
Upfal, “Trading Space for Time in Undirected s-t
Connectivity”, ACM Symposium on Theory of Computing,
pp. 543-549, 1989.
[8] Kazaa media desktop. http://www.kazaa.com/.
[9] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J.
Pruyne, B. Richard, S. Rollins, and Z. Xu, “Peer-to-Peer
Computing”, Research Report No HPL-2002-57, HP Labs,
March 2002.
[10] P. Gauron, “Topologies dynamiques pour les systèmes
pair-à-pair“, Rapport de stage de DEA Informatique
distribuée, Université Paris-Sud-Orsay, 2002.
[11] I. Stoicay, R. Morrisz, D. Liben-Nowellz, D. R.
Kargerz, M. Frans Kaashoekz, F. Dabekz, and H.
Balakrishnanz, “Chord : A scalable peer-to-peer lookup
protocol for internet applications “,
http ://www.pdos.csail.mit.edu/papers/, 2001.
[12] A. Rowstron, and P. Druschel, “Pastry : Scalable,
decentralized object location, and routing for large-scale

peer-to-peer systems”, Lecture Notes in Computer Science,
N_ 2218, 2001.
[13] B.Y. Zhao, J.D. Kubiatowicz, and A.D. Joseph,
“Tapestry : An infrastructure for fault-tolerant wide-area
location and routing”, UC Berkeley, UCB/CSD-01-1141,
2001.
[14] Gnutella: http://www.gnutella.com/
[15] J. Gaber, and M. Bakhouya, “Mobile agent-based
approach for resource discovery in peer-to-peer networks”,
In Fifth International Workshop on Agents and Peer-to-Peer
Computing (AP2PC) at AAMAS, Mai 2006.
[16] A. Broder, and A. Karlin,” Bounds on the Cover Time”,
Journal of Theoretical Probability, 2(1):101-120, January
1989.
[17] W. Zhao, H. Schulzrinne, and E. Guttman, “mSLP-
Mesh-enhanced Service Location Protocol”, ICCCN 2000,
Internet Draft draft-zhao-slp-da-interaction-07.txt.
[18] D. Xu, K. Nahrstedt, and D. Wichadakul, “Qos-aware
discovery of wide-area distributed services”, In First
IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid), 2001.
[19] C. Perkins, “Service Location Protocol”, ACTS Mobile
Networking Summit/ MMITS Software Radio Workshop,
Rhodes, Greece, June 1998.
[20] D. Tsoumakos, and N. Roussopoulos, “Adaptive
Probabilistic Search for Peer-to-Peer Networks”, In
Proceedings of the 3rd IEEE International Conference on
P2P Computing, Sept 1-3 2003, Linkoping, Sweden.
[21] M. Bakhouya, “Self-adaptive approach based on mobile
agent and inspired by human immune system for service
discovery in large scale networks”, PhD Thesis, No 34,
Universite de Technologies de Belfort-Montbeliard, 2005.
[22] D. Chess, C. Harrison, and A. Kershenbaum, “Mobile
agents: Are they a good idea?”, IBM T. J. Watson Research
Center, 1994.
[23] J. Gaber, “New paradigms for ubiquitous and pervasive
computing”, Research Report RR-09, Universite de
Technologies de Belfort-Montbeliard (UTBM), France,
2000.
[24] J. Gaber, “New paradigms for ubiquitous and pervasive
applications”, Proceeding of First Workshop on Software
Engineering Challenges for Ubiquitous Computing,
Lancaster, UK, 2006.
[25] M. Bakhouya, and J. Gaber, “Adaptive approach for the
regulation of a mobile agent population in a distributed
network”, In 5th International Symposium on Parallel and
Distributed Computing (ISPDC'06). IEEE Press. Timisoara,
Romania, 2006.

