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Abstract 

In this paper, a distributed and adaptive approach 
for resource discovery in peer-to-peer networks is 
presented. This approach is based on the mobile agent 
paradigm and the random walk technique with 
reinforcement learning to allow for dynamic and self-
adaptive resource discovery. More precisely, this 
approach augments random walks with a 
reinforcement learning technique where mobile agents 
are backtracked over the walked path in the network. A 
metric recording an affinity value that incorporates 
knowledge from past and present searches is 
maintained between nodes. The affinity value is used 
during a search to influence the selection of the next 
hop. This approach is evaluated with the network 
simulator ns2. 
 
1. Introduction 
 

Distributed computing such as peer-to-peer 
networks promise a distributed computing 
infrastructure that can provide globally available 
network resources. Their size and complexity continue 
to increase and allow an almost ubiquitous availability 
of resources. Resources are bound to specific hosts, 
representing hardware devises (e.g., disk), logical 
system objects (e.g., socket), files or software entities 
that are managed by an application.  

In peer-to-peer networks, a resource discovery 
system to locate specific resources is required. More 
precisely, the resource discovery is a basic 
functionality that enhances the accessibility of 
resources in the distributed context: given a user 
request, a resource discovery mechanism should locate 
and return a set of peers’ addresses that match the 
description of requested resources. 

In a large-scale peer-to-peer network, resource 
discovery system should be decentralized and scalable 
in order to avoid potential computation bottlenecks 
such as the need for knowledge about a centralized 
location, and the need for updates to that location 
whenever resources characteristics or locations may 

change. Several systems are proposed in order to 
implement a resource discovery services. These 
systems can be classified as either structured or 
unstructured [1].  

Structured architectures can be classified in 
indexation-based architectures and hashing-based 
architectures. In indexation-based architectures, typical 
resource discovery architectures, such as Napster [3], 
Kaaza [8], consists of three entities: resource providers 
that create and publish resources, resources brokers 
that maintain repositories of published resources to 
support their discovery, and resource requesters that 
search the resource broker’s repositories. Repositories 
in resource discovery systems have traditionally a 
hierarchical architecture [8,17,18,19]. Indexation based 
architectures cannot meet the requirements of both 
scalability and adaptability simultaneously. The way in 
which they have typically been constructed is often 
very inflexible due to the risk of bottlenecks and the 
difficulty of repositories updating. Hashing-based 
architectures [9, 10] like Chord [11], Pastry [12], and 
Tapestry [13] proposed primarily to file sharing and 
use Distributed Hash Tables (DHTs) to assign files to 
specific nodes. Hashing-based architectures permit to 
implement a direct routing search algorithm to 
efficiently locate resources. However, the overlay 
network (i.e., DHT) between peers is generally hard to 
maintain. More precisely, peer join/leave operations 
could incur huge overheads [2].  

In contrast, unstructured P2P networks, like 
Gnutella [14], have no precise control over resource 
emplacements and use flooding search protocols where 
the request is broadcast to all peers within a certain 
radius with TTL mechanism (TTL for Time To Live) 
[1, 2]. More precisely, in order to find a resource, the 
request is flooded to peer nodes in the network. Each 
request has an attached time to live to control the 
number of hops that a query can be propagated across 
the network. Each node that passed a request to its 
neighboring peers would decrement the TTL. When 
the TTL reached 0, the request was no longer 
forwarded. However, it is not possible to guarantee the 
success or failure of a request. In other words, a 



resource may not be found even though it does in fact 
exist in the network. To overcome this disadvantage, 
the dynamic TTL using the expanding ring technique 
is proposed in [1]. The principle of expanding ring is 
as follows: a peer starts a flood with small TTL, and 
waits to see if the search is successful. If it is, then the 
peer stops the flooding. Otherwise, the peer increases 
the TTL and starts another flood. The process is 
repeated until finding required resource or covering the 
entire network. According to [1,2], the expanding ring 
technique guaranties that if the resource is presents in 
the network it will be found compared with regular 
flooding with a fixed TTL. However, if the expanding 
ring mechanism solves the TTL selection problem, it 
does not address the message duplication problem 
inherent in flooding that can generate large loads on 
the network [1,2].  

Random walk is a well-known technique [7,16], 
which forwards a query message (walker) to a 
randomly chosen neighbor at each step until the 
service is found, can avoid the message duplication 
problem inherent in the flooding mechanism. Using 
one walker, it cuts down the message overhead 
significantly. However, it increases delay of successful 
searches [1,2]. To decrease the delay, a requesting peer 
sends k query messages, and each query message takes 
its own random walk. However, it is difficult to 
determine a priori the number of walks and when this 
number is big enough, the message traffic increases 
significantly [1, 2]. The replication mechanisms, such 
as cache some objects in the reverse path of queries, 
proposed in [2] can reduce the lookup length and 
decrease the message traffic. However, in a dynamic 
and distributed setting, it is difficult ever impossible to 
maintaining the coherence of duplicated objects.  

Recently, an alternative approach to replication 
mechanisms, proposed in [15], uses both random 
walks and a cloning mobile agent-based technique for 
resource discovery in peer-to-peer networks. More 
precisely, in this paper, three scenarios with mobile 
agents for resource discovery are analyzed. To locate a 
service, a mobile agent starts, at its first step, on its 
requester peer. At each hop, a mobile agent determines 
the IP address of randomly chosen neighboring peers, 
creates clones, and pass tasks to these clones that move 
to these peers. This scenario with cloning allows 
mobiles agents to cover a much wide area of network 
peers in a reasonable amount of time compared to a 
single mobile agent scenario and multiple mobile 
agents' scenario [15].  

In this paper, to decrease delay of request resolution 
proposed in [15], a reinforcement learning mechanism 
for resource discovery in peer-to-peer networks is 
proposed. This mechanism of reinforcement learning 

allows peers to learn from their satisfaction, and how 
coordinate to select and forward requests to the 
required peers in the most efficient ways. Unlike a 
random walk technique that allows peers to forward 
incoming queries to randomly chosen neighbors, in 
learning mechanism each peer selects a neighbor that 
has the highest probability of having query results.   

Several works propose to use learning mechanisms 
for resource discovery in a peer-to-peer network. For 
example, Iamnitchi and al. [4] have proposed a 
learning-based strategy for request forwarding. Peers 
learn from experiences by recording the requests 
answered by other peers. By this learning strategy, 
each peer maintains information about other peers in 
the network. The learning mechanism however is not 
exposed in this paper. Wang in [5] has proposed 
another learning based strategy approach inspired by 
ant colony and by using mobile agents. In this 
approach, the learning strategy is based on the use of a 
migration policy to discover routes between peers with 
available resources. These routes are then used to 
resolve user requests. As pointed out by the author 
from the experiments [5], the main difficulty of this 
approach is how to design and set up the migration 
policy parameters to handle different user requests. 
Tsoumakos and Roussopoulos have proposed in [20] 
an adaptive probabilistic search approach, but no 
learning mechanism was given. 

In this paper, a biased random walk based on 
mobiles agents and a reinforcement learning 
mechanism for resource discovery in peer-to-peer 
networks is presented. This reinforcement learning 
mechanism constitutes an organizational memory 
similar that the adaptive memory of immune system 
[21,23,24]. This organizational memory summarizes 
histories on how requests are performed in the past in 
order to adapt to current and future requests.  

Recall that a mobile agent is an autonomous 
program that can move between sites of the network 
and perform computations at these sites on behalf of a 
user or an application [22]. Several applications have 
shown clear evidence of benefiting from the use of 
mobile agents such as electronic trading, distributed 
information retrieval and information dissemination 
[21].  

Recently, Gaber in [23,24] has proposed two new 
paradigms alternative to the traditional client/server 
paradigm (CSP) to design and implement Ubiquitous 
and Pervasive Computing applications: the adaptive 
Servers/Client Paradigm (SCP) and the Spontaneous 
Service Emergence Paradigm (SEP). As pointed in 
[23,24], these paradigms could be implemented via a 
self-adaptive and reactive middleware inspired by a 
biological system like the natural immune system that 



exhibits self-organizing and emergence capabilities. 
More precisely, unlike the classical Client/Server 
approach, each user request is considered as an attack 
launched against the global network. An immune 
networking middleware reacts like the natural immune 
system against pathogens that have entered the body. It 
detects the infection (i.e., user request) and delivers a 
response to eliminate it (i.e., satisfy the user request). 
Recall that in ubiquitous computing, the main 
objective is to provide users the ability to access 
services and resources all the time and irrespective to 
their location, while in pervasive computing, the main 
objective is to provide spontaneous emergent services 
created on the fly by mobiles that interact by ad hoc 
connections [23,24]. These new paradigms use mobile 
agents with cloning, self-organizing, and self-
regulation capabilities. 

 
2. Request resolution approach 

 
The request resolution is the process by which the 

user will be provided by the required service. In the 
proposed approach, this process is made in two stages: 
request forwarding stage and result backtracking stage. 
 
2.1. Request forwarding  
 

In P2P networks, each peer contains links to other 
peers called neighboring peers, as typical Gnutella-like 
networks. Each peer has a bounded number of 
neighbors and provides at least one resource. One or a 
set of resources can represent a service 

),...,,( 21 nRRRS=  and we called it a service path.  
The peer willing to locate a service creates a mobile 

agent, called request agent. This agent initiates a 
random walk in the network until it discovers 
appropriate peers that can resolves the request r or it 
terminates its random walk. At each hop, the mobile 
agent can clone itself. When the all required resources 
are discovered, a request agent stops cloning itself, 
send results to the requester, and starts the 
backtracking phase. In this phase, mobile agent travels 
back to its initial peer following back the founded path. 
The role of this backtracking phase is to perform a 
reinforcement learning mechanism on links between 
peers. More precisely, the objective of this 
backtracking phase is to permit for peers to learn from 
mobile agents satisfactions on past requests to carry 
out biased random walk in order to improve 
performance of future requests. 

It is worth noting that, in the agent-cloning 
scenario, the increasing of the agent population size 
with cloning operation will increase resource demands 

in the network, which will affect the overall 
performance. The self-adaptive and distributed 
regulation algorithm proposed in [21,25] is used to 
regulate dynamically the agents’ population size in a 
network. In this algorithm, each mobile agent selects 
locally an appropriate behavior to its environment state 
from the following ones: death, moving or cloning 
without using any global information. 

It should be noted that, at each step, a mobile agent 
adds the peer visited to its traveled path rπ . Also, the 
required resources discovered are added to an agent’s 
set of founded resources denoted by rF . The mobile 
agent moves back to the requester peer when all 
resources are found (i.e., rr FS = ) or terminate its 
walk.  

Since each peer could have several neighboring 
peers, a mobile agent needs a local decision 
mechanism to select the most next suitable peer to 
visit. The selection mechanism is based on link affinity 
values between peers that incorporate knowledge from 
past and present searches. More precisely, a mobile 
agent chooses a peer that has the highest affinity value. 
An affinity value is a real variable that is adjusted or 
reinforced by mobile agents satisfactions during a 
result backtracking phase (presented in the next 
section). The satisfaction value is calculated for each 
request r as follows: 

r

rr
S
FSat

#
#)( =π      (1) 

In addition, we consider that a TTL value is 
associated with each mobile agent. This TTL value 
decreases by one at each visited peer. When the TTL 
reaches the value 0, the agent checks with its initiator, 
the original requester. If any other mobile agent has 
already found the required resources, it terminates its 
random walk and starts the result backtracking phase 
with the reinforcement learning process. Otherwise, if 
the initiator renews its TTL value, the agent continues 
it walks and moves randomly to a next peer, if not, it 
starts the backtracking phase to adjust the affinity 
values along the computed path. 

 
2.2. Result backtracking  
 

Upon mobile agent termination (i.e. success or fail) 
it starts the backtracking phase. During this phase, the 
path computed between an end point of walk (i.e., 
residing peer) and the requester point will be 
reinforced by affinity adjustments. This phase makes 
the path more adapted to future requests. Therefore, 
the resource discovery system will be able to process 
the most frequent requests more efficiently. During the 



result backtracking phase, the mobile agent goes back 
from the end point, via the intermediate peers on the 
founded service path, to the initial point (i.e., requester 
peer) and reinforce the service path based on its 
satisfaction calculated by the equation (1). The affinity 
variation for a particular request r  between a peer iP  

and a peer jP  in the path rπ  is determined as follows: 

))()(()( ijrij mfSatrm −=∆ πµ      (2) 
More precisely, when the mobile agent is on the 

peer jP , it moves back to its predecessor server iP  

and adjusts the affinity value ijm  using equation (2), 

wherein )( rSat π  is the satisfaction degree and µ  is a 
constant value chosen between 0 and 1. For example, 
if the mobile agent found 80% of the resources for a 
particular request r , the satisfaction degree )( rSat π  is 
set to 0,8. If the mobile agent terminates with success, 

)( rSat π  is set to 1 since all the required resources are 

found (i.e., rr FS = ). Also, when a mobile agent 
terminates its walk, it calculates the value of its 
satisfaction using the equation 1, and starts the result 
backtracking phase along the reverse path rπ  towards 
the requester peer.  The value of affinity is mapped to a 
value between 0 and 1 by using the following logistic 
equation: 

)exp(1/1)( ijij mmf −+=  (3) 

Within this equation, the affinity value ijm  
increases quickly when it is near 0 and satisfaction 

)( rSat π  is equal to 1. Also, the affinity value ijm  
decreases quickly when the satisfaction is equal to 0. 

To illustrate the forwarding and backtracking 
phases, we consider the following example. To locate a 
service ),,,( 4321 RRRRS= , a peer P1 creates a request r  
and initiates two mobile agents A1 and A2 (since he has 
two neighbors) with the list Sr of the required 
resources, the IP address and an initial TTL. Figure 1 
shows how a forwarding phase works. The two agents 
A1 and A2 add the peer P1 to their visited peers list (i.e., 
a service path) and move to the peer P2 and P6 
respectively. These agents repeat the same processes 
until they find the required service or their TTLs are 
expired. The mobile agents paths during the request-
forwarding phase are shown with arrows in the figure 
1. For example, since, the peer P2 provides the 
required resource R1, the agent A1 adds it to its set of 
founded resources rF and then moves to the P2‘s 
single neighbor P3 that possess the required resource 
R4. Since, the peer P3 has two neighbor peers P4 and 

P9, the agent A1 is cloned to create another agent A11 
that moves to peer P9.  A1 moves to the other peer P4 
which holds R3, creates another clone, the agent A12, 
that walks to the peer P8, and moves itself to the peer 
P7 with the last required resource R2. A1 starts then the 
backtracking phase towards its initiator, the requester 
peer P1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 – Request forwarding phase to locate the service 

),,,( 4321 RRRRS= . Arrows illustrate mobile agents paths. Ap 
denotes the agent p and Apq the qth clone of Ap, mij denotes 
the affinity value between the peer Pi and the peer Pj that 
incorporates knowledge from past and present searches. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 – Request backtracking phase. Mobile agents, 

during backtracks illustrated by arrows, adjust the affinity 
values. 

 
After forwarding phase either with success or fails, 

agents walk back as shown with arrows in figure 2. 
More precisely, during the backtracking phase, each 
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mobile agent goes back from the last visited peer, via 
the intermediate peers on the founded service path, to 
the initial peer. Agents use a reinforcement learning 
mechanism to adjust and reinforce dynamically link 
affinity values between peers according to their 
satisfaction deduced from delivered responses. More 
precisely, the new value of the affinity ijm  is obtained 
by adding its previous value with the variation 
determined by equation (2) (i.e., )(rmmm ijijij ∆+= ). As 
illustrated by figure 2, the mobile agent A11 with path 

),,,( 9321 PPPPr =π  fails, while the mobile agent A1 with 

path ),,,,( 74321 PPPPPr =π  finds the whole service. 
Therefore, its satisfaction is set to 1 since 100% of the 
required resources are found. The mobile agent moves 
back from the peer 7P , via intermediate peers on the 

founded service path, to 1P  and reinforces affinities 

values of the path ),,,,( 74321 PPPPPr =π . In this case, 

the affinity value of 47m , 34m , 23m  and 12m  are 

reinforced using equation (2), where )( rSat π  is set to 

1.  For example, 47m  has increased from the value 0 to 

0,5 (i.e., 0,5=0+(1-f(0)), with 1=µ ) and 34m has been 
adjusted from the value 1 to 1,28 by both the agents  
A1 and A12. The mobile agent A11 has failed and its 
satisfaction is set to 0,5 since only 50% of the required 
resources are found (i.e., R1 and R3). This agent moves 
back from the peer P9 to a peer P1 and adjusts the 
affinity values 39m , 23m  and 12m  along the path 

),,,( 9321 PPPPr =π  using equation (2) and )( rSat π  

equals to 0,5. For example, 39m  has decreased from 
the value 1 to 0,77 (i.e., 0,77=1+(0,5-f(1)), with 

1=µ )). 
This proposed learning mechanism permits to peers 

to learn from past and present requests to improve 
performance of the future requests. It do not require 
any additional overhead to adapt to dynamic 
conditions changes in the network such as peer arrivals 
or departures, or when resources are removed or new 
ones are inserted since affinity values are adjusted 
dynamically by mobile agents during the requests 
resolution process. 
 
3. Simulation results 
 

The proposed discovery approach is evaluated by 
simulations implemented with NS2 [6]. A network of 
100 peers is generated randomly. Each peer provides 
one resource of ten kinds of resources. The simulation 

abstracts any considerations about networking issues 
such as bandwidth constraints and time processing.  

The objective of this simulation is to compare two 
strategies as shown in figure 3. In the first strategy, a 
reinforcement learning mechanism is not performed. In 
this case, at each simulation step, 10 mobile agents 
created at some peers selected randomly are asking for 
different kinds of resources generated randomly 
between 1 and 10. Mobile agents walk randomly in the 
network until to meet peers with the required resources 
and resolve their requests [15]. In the second strategy, 
at the beginning of the simulation, requester peers 
create mobile agents that initiate random walks in the 
network to resolve requests. In other words, at each 
simulation step, 10 mobile agents created at some 
peers selected randomly are asking for different kinds 
of resources generated randomly between 1 and 10. 
Mobile agents walk randomly to seek peers with one 
of the required resources. As the simulation progress 
and using the affinity adjustments during the request 
backtracking phase, for a particular request, mobile 
agent moves to a peer that has the highest affinity 
value and a selected service path will emerge as a 
response to that request. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 – comparison of the average requests resolution 

time with a simple random walk without learning mechanism 
and the proposed model-driven walk. 

 
This result shows that with reinforcement learning, 

at the beginning of the simulation, request resolution 
performs poorly like the simple random walk without 
learning. As more simulator time elapses, peers learn 
from delivered responses, which improve the 
performance of the resource discovery process. 

 
4. Conclusion 
 

In this paper, the use of mobile agents with a 
reinforcement learning mechanism is shown to be the 
appropriate approach to provide a distributed, scalable 
and adaptive resource discovery in peer-to-peer 
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networks. This reinforcement learning mechanism that 
incorporates knowledge from past and present requests 
improve the performance of the request resolution 
process. Future works address additional simulations 
with ns2 to evaluate the approach performance when 
storage and bandwidth communication are considered. 
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